

SWM als Gestalter der Wärmewende

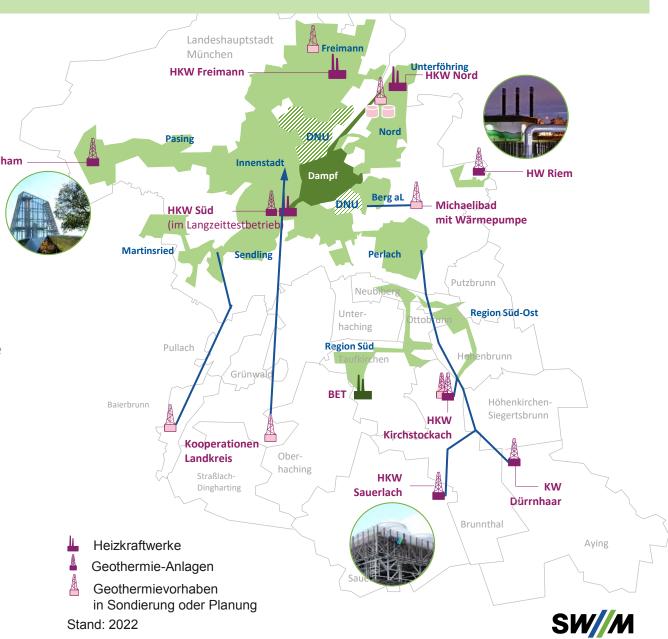
- Im Wärmebereich wird in Deutschland die meiste Energie eingesetzt.
- ▶ In Privathaushalten werden sogar rund 90 % der Energie für Raumwärme und Warmwasserbereitung benötigt.
- Die Wärmeerzeugung in Deutschland wird noch immer von fossilen Technologien dominiert.

SWM Ausbauoffensive beinhaltet

auch diesen großen Teil der Energieerzeugung.

100 % Ökowärme:

Bis 2040 wollen die SWM den Münchner Bedarf an Fernwärme CO₂-neutral und überwiegend aus Tiefen-Geothermie decken.


Bausteine der Wärmewende

Fernwärme (Kunden, Netz, Erzeugung)

- Innerstädtischer Geothermieausbau
- Erschließung von Geothermiepotenzialen im Süden, u.a. in kommunalen Kooperationen
- Bau von Leitungen zum Transport der Wärme von Süden nach Norden
- Rücklauf- sowie teilweise Vorlauftemperaturabsenkung
- Umstellung Dampf- auf modernen Heizwasserbetrieb
- ▶ Thermische Abfallverwertung, Großwärmepumpen, weitere CO₂-neutrale Wärmeerzeugung (z.B. Biomasse oder Wasserstoff)
- Saisonale Wärmespeicherung

Nahwärmenetze (Niedertemperatur, Grundwasser)

Wärmepumpen (Luft, Wasser, Erde)

Fernwärme - diese Vorteile überzeugten bestehende Kunden

Ökologie

- Niedrige Primärenergiefaktoren
- Ständig steigender EE-Anteil
- Niedriges CO_{2eq}
- Gebäudezertifizierung "LEED", "Green Building", "Platin"

- Gesetze und Förderung Erfüllung Anforderungen GEG, BEG, FKG, ...
 - Kostenoptimierung im Neubau
 - Erreichung Kriterien von diversen Förderungen
 - Effizienzhausstufen werden erreicht
 - Positiver Gebäudeenergieausweis im Bestandsbau
 - Förderung aus BEG, FKG der LHM, SWM für Sonderbeitrag

Fernwärme - diese Vorteile überzeugten bestehende Kunden

Technik

- Bestand keine Probleme mit vorhandenem Heizsystem/Heizkörpern
- Bestand/Neubau keine Probleme mit den ganzjährig notwendigen Vorlauftemperaturen für die Warmwasserbereitung
- Bestand/Neubau keine Feinstaubdiskussion
- Bestand/Neubau keine Probleme mit Geräuschen
- Betriebs- und Wartungskosten niedrig
- Versorgungssicherheit hoch
- Preise marktgerecht und stabil
- ▶ Raumgewinn durch geringe Baugröße
- Abrechnung einfach und komfortabel

- Marktanteil am Gesamtwärmemarkt (Wohnen, Gewerbe, Prozesswärme) - ca. 30 %
- Marktanteil bei versorgten Haushalten ca. 35%
- Potential am Gesamtwärmemarkt ca. 45%
- ▶ Potential bei versorgten Haushalten ca. 50%

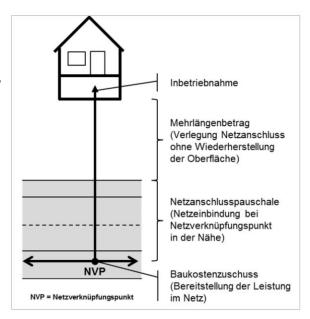
Fernwärme – Netzanschluss- und Wärmelieferverträge

Netz-/Hausanschlussvertrag

- Beratung Anschlussmöglichkeit Kontaktaufnahme
- Beauftragung Netzanschluss
 - Kundenformular
 - ▶ Plan Untergeschoss mit Standort Übergabestation
- Angebot/Vertrag Netz-/Hausanschluss
 - Baukostenzuschuss
 - Preis Hausanschluss
 - Preis Inbetriebsetzung
 - ggf. Sonderbeitrag
- Angebot Contracting/Beistellung falls gewünscht

Wärmeliefervertrag

- Arbeitspreis EUR/MWh
- Grundpreis EUR/kW*a
- Messpreis EUR/a
- Grund- und Arbeitspreis gleiten vierteljährlich nach nachvollziehbaren vertraglich fixierten Preisgleitklauseln
- Zusatzvereinbarung Contracting/Beistellung falls gewünscht
 - Grundpreis II EUR/a


Wirtschaftliche-technische-rechtliche Eckdaten Netzerweiterung Im Sinne aller Kunden sind die SWM zur wirtschaftlichen Betriebsführung verpflichtet.

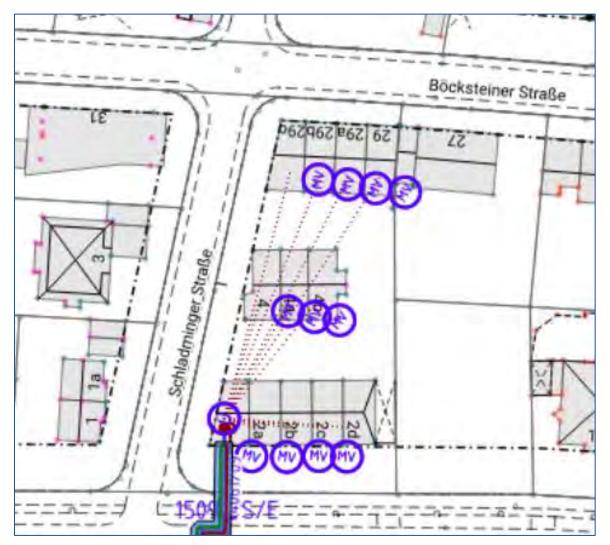
Ziel – Angebot Hausanschluss zu marktgerechten Konditionen

- Wirtschaftlichkeitsbetrachtung = 20-Jahresbetrachtung aus
 - Kosten Invest, Betrieb und Wärmeerzeugung
 - Erlöse aus Hausanschluss und Wärmelieferung
 - Eventuelle externe Förderungen (KWKG, BEW)
 - Förderung aus Fördertopf SWM für Sonderbeitrag

Beispiel:

- ▶ Netzerweiterung Stadtgebiet München Kosten mittlerer 4-stelliger TEUR-Betrag/Trassenmeter
- ▶ für 30 m Trassenerweiterung werden ca. 150 200 kW benötigt (= ca. 30-50 WE oder ca. 15 EFH)
- ▶ Mietrechtsänderungsgesetz (BGB §556c) und Wärmelieferverordnung aus 2012/13 Betriebskostenneutralität
 - Eigentümer kann nur auf Wärmelieferung durch Dritte umstellen, wenn Betriebskostenneutralität gegeben ist

Fernwärme – EFH-, ZFH- und Reihenhausquartiere

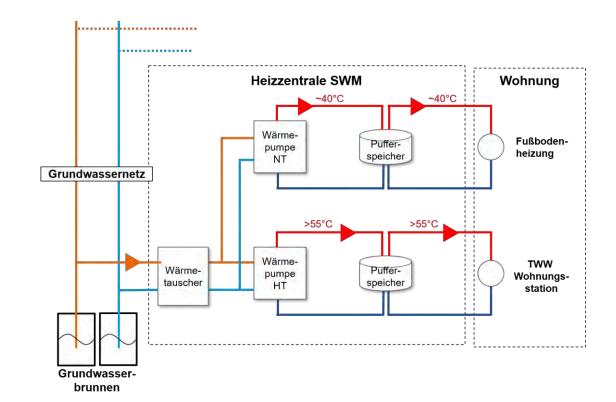


EFH-, ZFH- und Reihenhausquartiere - Kopfstation mit sekundärer Verteilung

- Übergabe-/Leistungsgrenze SWM = Eingang Kopfstation gemäß TAB (Absperrventile)
- Bildung einer Eigentümergemeinschaft (ETG)
- Rechtsgeschäftlichen Vertreter bestimmen
- Gegenseitige Einräumung Dienstbarkeiten
- Beauftragung Planer/Installationsunternehmen durch ETG

...

Abschätzung notwendiges Potenzial Beteiligung: 60-70 %


M-Nahwärme und dezentrale Energielösungen mit Wärmepumpe

Überblick

Beispielhaftes Anlagenschema

- ▶ Effiziente Nutzung von Umweltwärme v.a. Grundwasser oder Umgebungsluft
- Kein Einsatz von fossilen Energieträgern
- Individuelle Kundenlösungen möglich
- Kunden erfüllen das Gebäude-Energie-Gesetz (GEG)
- ► Primärenergiefaktor: 0,4 0,6

Einsatzmöglichkeiten für M-Nahwärme – Analogie zur M-Fernwärme

Neubau- und Bestandsimmobilien

Ein- und Mehrfamilienhäuser

Private oder gewerbliche Nutzungen

Als Siedlungs- und Quartierslösung

Optional auch zur Kühlung im Sommer

Mit der M-Wärmepumpe sind Sie bestens gerüstet für die Zukunft!

Nachhaltig

Nachhaltiges und zukunftssicheres Heizen spart CO₂-Emissionen und schont das Klima. Mit einer Wärmepumpe werden keine fossilen Rohstoffe verbrannt.

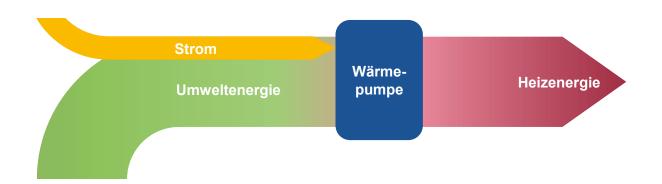

Effizient

Da eine Wärmepumpe sehr effizient arbeitet, können Sie durch die niedrigen Betriebskosten Geld sparen.

Unabhängig

Mit einer Wärmepumpe machen Sie sich von fossilen Rohstoffen und deren Preisschwankungen unabhängig.

Flexibel


Wärmepumpen eignen sich für unterschiedliche Gebäudearten und Heizungen und lassen sich mit anderen Technologien kombinieren, z. B. Solarthermie und PV.

Wärmequellen im Überblick

Eine Wärmepumpe bedient sich einer natürlichen Wärmequelle und wandelt vorhandene Umweltenergie unter Zuführung von Strom in Wärmeenergie um.

Wärmequellen

Grundwasser

- Konstant hohe Temperatur
- Sehr effizient
- Brunnenbohrung inkl. Genehmigungen erforderlich

Voraussetzungen in München aufgrund seines Grundwasser-Aquifers einzigartig

₩ Luft

- Überall verfügbar und einfach erschließbar
- Effizienz und Heizleistung abhängig von Außentemperatur
- Beachtung von Lärmschutzgebieten

Machbar in München

Erde

- Konstant hohe Temperatur
- Sehr effizient
- Erdarbeiten inkl. Genehmigungen erforderlich

Bohrtiefe wird durch Gesetzeslage beschränkt, weshalb Umsetzung in München schwierig ist

